

Models for Evaluation and Optimization

of Grid-Scale Energy Storage

Sandia **National**

Atri Bera and Joydeep Mitra

Electrical & Computer Engineering, Michigan State University, East Lansing, MI 48824

Project Objectives

- Model development for evaluation and optimization of grid-scale energy storage systems (ESS)
- Siting and sizing of ESS for maximizing economic benefits, stability, and reliability improvement of the grid
- Developing and integrating degradation models of ESS in the optimization framework for more realistic economic evaluation

Degradation Cost

- New cost model—both *energy* throughput and cycle count
- Incorporated into the optimization framework as an operational expense
- Results:
 - neglecting degradation cost leads to overestimation of lifetime revenue
 - considering degradation cost prolongs the lifetime of the battery

	W. Deg. Cost		W/o. Deg. Cost	
Battery Size	Revenue (\$)	Lifetime (yr.)	Revenue (\$)	Lifetime (yr.)
10 MW, 5 MWh	8,116,541	6	10,492,202	5
10 MW, 10 MWh	11,062,330	8	13,865,585	6
10 MW, 20 MWh	13,139,466	10	17,629,318	8

Project Team

- **Sandia National Laboratories:** R.H. Byrne, Babu Chalamala, Tu Nguyen and Ricky Concepcion
- Michigan State University: Joydeep Mitra (PI) and Atri Bera

Acknowledgement

The project team wishes to thank **Dr. Imre** Gyuk for his continued support.

Publications

- 1. A. Bera, B. Chalamala, R.H. Byrne, and J. Mitra, "Sizing of Energy Storage for Grid Frequency Stability", in IEEE Transactions on Power Systems. (Under Review)
- 2. A. Bera, S. Almasabi, Y. Tian, B. Chalamala, R.H. Byrne, T.A. Nguyen, and J. Mitra "Maximizing the Investment **Returns of a Grid-connected Battery considering** Degradation Cost," in IET Generation, Transmission & Distribution (2020).
- 3. A. Bera, S. Almasabi, J. Mitra, B. Chalamala and R.H. Byrne, "Spatiotemporal Optimization of Grid-**Connected Energy Storage to Maximize Economic** Benefits," at the 2019 IEEE Industry Applications Society Annual Meeting.
- 4. A. Bera, N. Nguyen and J. Mitra, "Lifetime Revenue from Energy Storage considering Battery **Degradation**," at the 2019 North American Power Symposium (NAPS).
- 5. Y. Tian, A. Bera, J. Mitra, B. Chalamala and R.H. Byrne, "Effects of Operating Strategies on the Longevity of Li-ion Battery Energy Storage Systems," at the 2018 IEEE Industry Applications Society Annual Meeting.

Sizing of Energy Storage for Grid Frequency Stability¹

- Renewable energy resources (RERs) possess little rotational kinetic energy—challenge for grid frequency stability
- ESS can compensate with virtual inertia
- Analytical approach—sizing ESS for virtual inertia support
- Estimation of expected inertia of system considering generator outages and replacement of conventional generation with RER
- Probability of synchronization of conventional units considered
- Maximum frequency deviation limit used to determine minimum inertia required by system

Case	Freq. Dev. Limit (Hz)	Expected Inertia (s)	P _{ESS} (MW)
No RER	0.085		257
	0.09	580	66
	0.095		N/A
8% wind penetration	0.085	579	347
	0.09		133
	0.095		N/A
20% wind penetration	0.085	552	538
	0.09		293
	0.095		93

Table. ESS sizes for a load disturbance of 0.1 p.u. (IEEE 39-bus Test System).

Maximizing Investment Returns of a Grid-Connected Battery²

- Quantification of economic benefits of BESS
- Comprehensive investment planning framework
- New degradation cost model for BESS in electricity markets
- **Li-ion** batteries: *high efficiency*, high energy density, declining costs
- Applications: energy arbitrage and frequency regulation
- Cost-benefit analysis—payback period, return on investment (ROI) and net present value (NPV)

Battery Size	Lifetime (yr.)	Revenue (\$)	Mean Cycles (per year)
10 MW, 5 MWh	6	8,116,541	1829
10 MW, 10 MWh	8	11,062,330	1731
10 MW, 20 MWh	10	13,139,466	1526

	Battery Size	Payback Period (yr.)	NPV (\$)	ROI (%)
	10 MW, 5 MWh	3.5	2,041,521	80.6
>	10 MW, 10 MWh	4.5	2,441,298	83.4
	10 MW, 20 MWh	6.5	510,846	44.0

Project Synopsis

- **Optimization** framework for evaluating the economic benefits of ESS
- Development and integration of degradation models
- Utilization of energy storage for stability and reliability improvement of the grid

Proposed

- Comprehensive investment planning framework developed for ESS—maximizes economic benefits
- New degradation cost model developed and integrated into the optimization framework
- Analytical approach developed for sizing of ESS for grid frequency stability

Achieved

- Framework for unifying economic, stability and reliability applications of ESS being developed
- All applications to be co-optimized
- Trade-off between operational cost of system and investment cost of ESS to be studied

Under Development